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Wavelet-Based Approximation
(Introduction and Motivation)



Some “Desirables” in Approximation Theory

e Building Block Property: Availability of a single ap-
proximating function ¢, called a scaling function, to serve
as a building block for approximations (or samplings) of any
given function xz(t)

— The approximation is done by having different translates
of ¢ fitted as closely as possible to x(t)

— The translates of ¢ are (¢g)r, where ¢p(t) = o(t — k)

— The approximation is represented by the multiplier coet-
ficients (ag)x of the translates (¢g)x

— Mathematically, x(t) = o ardr(t)

e Malleability Property: Dilatability of the building block
@ to yield higher- or lower-resolution approximations

— Adilate of ¢ at scale 7 is ¢jo = 2%(b(2jt)

— The translates of dilates are ¢, = 2%q5(2jt — k)

— Note that the domain size of ¢; 1 is halt that of ¢, and the
domain size of ¢ is quarter that of ¢, and so on. Thus
the music terminology “scale”

— The multiplier 2% is to to make the dilates have the same
energy (i.e., square integral) as ¢

— The higher the scale 7, the higher the resolution, because
the domain size of the building block is finer
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Some “Desirables” in Approximation Theory (Cont.)

e Analysis/Decomposition Property (part 1): Abil-
ity to derive the lower-resolution coefficients from the next
higher-resolution coefficients without any reference to the
original function x(t)

e Analysis/Decomposition Property (part 2): Abil-
ity to derive the coefficients of the error e(t) (residual or
difference) between a higher-resolution approximation and a
lower-resolution approximation,

— using only the higher-resolution coefficients

— without any reference to the original function ()
— using a building block v, called wavelet

— mathematically, e(t) = = bry

e Synthesis Property: Ability to derive the higher-resolution

coefficients directly without any reference to the original func-
tion z(t)

e Good-fit Property: Choice of a good building block ¢ for
the application signal(s) z(t) so that the error between the
x(t) and the approximations is as small as possible




Illustrations of Translates and Dilates



Mathematical Formulations

e Denote by x;(¢) the approximation of x(¢) at scale j. That
1S

)

—xj(t) = 2pxpp; k(t) for some (2 )k
—x;(t) is the best approximation of z(¢) among all linear
combinations of (¢, £(t))x

o Let e;_1(t) = z(t) — x;_1(t) be the error between scale-j
and scale-(j — 1) approximations of z(t);

ri(t) =z 1+ ej1(t)

e Notation:
zj(t) = Tk TP k(t)
Ti1(t) = Spurgj_1k(t)
ej-1(t) = 2k vpthj 1 k(1)

e Desirable properties
— For every z(t) in L?, z;(t) — z(t) as ] — o0
(convergence in L?)
— Analysis property: derivability of (ug)r and (vg), from
(@)
— Synthesis property: derivability of (xj); from both (ug)g
and (vg)x



Conditions for Achieving
the Analysis and Synthesis Properties

e Choose the scaling function ¢ to be composable from its own
higher-resolution dilates & translates

e Choose the wavelet 9 to be composable from the higher-
resolution dilates & translates of ¢

e Finally, higher-resolution dilates-&-translates of ¢ should be
decomposable into lower-resolution dilates-&-translates of ¢

and

e Mathematically

— P(t) = =, pad(2t — n), for some sequence (py)n
—Y(t) = %, ¢,¢(2t — n), for some sequence (g, )n

— (2t — k) = %Zn Gon—kp(t — 1) + hon_ptp(t — n)],

for some sequences (g,), and (hy,),



Relation to Subband Coding

e Theorem:
Let 513]<t) = 2L ZCka],k(t)
zj-1(t) = Sk wkdj—1,k(¢)
€j-1(t) = Tk vpthj—1,1(t)
where
(t> = 2p pn¢<2t R n)
(t> = 2n Qn¢< t— n)
P2t — k) = 550 [920-kP(t — ) + hon—rp(t — n)].

Then (x)y is related with (ug)r and (vg)x by the following
subband coder:



Proof of the Theorem
(Analysis stage: from (z;); to (ug)r and (vg))

o $(2t — k) = 15, [gan_rd(t — n) + hon_ib(t — n)]

2
227

MIM DO,

o k()= 226(27t — k)

S |G2n— kP27 — ) + hop— (2771 — n)|

® ¢;k(t) = % i [Gon—kPj—1,n(t) + han—ktj-1n(t)]

o 1;(t)= Tk Tkdj k(1)
:E< ank >¢J 1n(> ( h%k >¢J 1n<)

e On the other hand,
x]<t) — xj—l(t> T ej—l(t> = Xp un¢j—1,n(t> + =y vn/'vbj—l,n( )

e Therefore,

hop— .
—Un = Xp &5 Lk = U2p

e That is, (u,), is the down-sampled -4 J5-filtered (x )k, and
(vn)n is the down-sampled T—ﬁltered (Tr)k



Proof of the Theorem
(Synthesis stage: from (u;);, and (vg)r to (z)r)

o (t) = T, ppo(2t — n)

o §j_1i(t)=2"7 $(2 1t — k)
=27 2, pad(2(2 1t — k) — n)
= 5, 2L23/(2/t — 2k — n)
= %0 B0 2k4n(t)

° S1m11arly, wj_l,n = Xp %qu@k—l—n(t)

o z;(t)=z;-1(t) + €j-1(t)
= %, [ur@j1,k(t) + vkthj 1 k(t)]
= T [Uk n TEQjak+n(t) + Uk Tn %%,%m(ﬂ]
=Sk Zp [p” ug + \/’/Uk‘] @ 2k4n(t)
-5 s Pt 5 0
(where r = 2k + n)
e Since x;(t) = =, x,¢,,(t), it follows that
{pr 2%, o A=k,
vz et

which is precisely the sum of the £ 7 -filtered upsampled (uy )

and the Z-filtered upsampled (Vg )k

Ty = 2
k
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Illustration of Wavelets’ Dynamic Adjustment
to Regional Variations without Blockiness

(Comparison with Whole DCT)
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Mathematical Method for Computing the Four Filters

(Symmetric Filters)

1. Define the z-transforms of the four filters, with a slight scale
modification:
G(z) = Spgrz®, P(z) = 5z pr®,
H(z) = %Zk hiz®, Q(z) = %Zk qp 2"

2. The perfect reconstruction condition (seen before):
e PR1: G(2)P(2)+ H(2)Q(z) =1
o PR2: G(—2)P(2)+ H(—2)Q(z) =0
3. Take H(z) = —2'P(—2) and Q(2) = —2G(—2), i.e.,
hi = (=D pry1 and g = (—=1)F g,

4. That choice of H and () satisfies PR2 and makes PR1 equiv-
alent to

PR'1: G(2)P(2)+G(—2)P(—z) =1
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. Theorem: The symmetry of the filters along with PR'1
implies that for any z = e

P(z) = e 2% cos!(2)S(cos w)

G(z) = e'2¥ COSZ(2)S(COSQ})
for some integers m, [ and l and some polynomials .S and

S , such that m, [ and | have the same parity, and [ and |
are positive.

Let N ==

. Therefore,

e G(2)P(z) = (0082(2))NS(Cosw)S(Cosw)

e G(—2)P(—z) = (sin®(£))" S(— cos w)S(—cosw),
because —z = e~ (WT7)

. By letting x = sin2(%) and defining the polynomial

F(z) = S(cosw)S(cosw) = S(1 — 22)S(1 — 2z),

one concludes from the previous step and PR'1 the following

equation
1-2)"Flo)+2"F(1-2)=1
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10.

11.

12.

. The general solution of that equation is of the form

F(z) = R(x) + 2" Ty(z)

where R(x) is a polynomial of degree N — 1 satisfying
(1—2)VR(x) +2VR(1 — ) =1,
and Ty(x) is an arbitrary polynomial such that
T()(l — ZC) — —T()(il?)

The equation of R(x) implies that
Riz)+2¥1—-2) "Rl —2)=(1—-2)".

Since (1 —z) ™ = 5450 N=k+l ) z* and R(z) is of de-

k
gree N — 1, it follows that

CNI(N—k+1) 4
R(z) = /;::0 ( " )az
Therefore,
N— _
F(z) = kZl (N kk 1 ) " 4+ 2T (cos w)
=0

where T'(cosw) = Tp(x) is an arbitrary odd polynomial.

In conclusion, to get S(cosw) and S(cosw), first factor F(x)
by means of root finding, then give some factors to S(cosw)
and the remaining factors to S(cosw).
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Algorithm for Computing the Taps of the Filters

L.

Lo N o

11.
12.
13.

N =Hland Fz) = =}~ 0(

. g(COSC{)) = erf Fk(az) = erz Fk<—

Input: specity [, | , and the polynomial 7T’

N kk+1)xk+a:NT(1—2x)

. Find the roots of F(x)

Thus F' is factored into F' = Fy F5... F,.

where every F}, is a linear or quadratic polynomial in x

Input: specify the index set L of the factors going to S

S(cosw) = Nyer Fi(x) = Mier Fk(—%QZ_l)
1-2
2

_222_1>

Compute the coefficients of
2

P(Z) = Z 2 (%)lﬂkelj Fk(—— Z 1)

. Let pj. = the coefficient of z* in P(z), for all k
10.

Compute the coefficients of

G() = (1) (15) g Fi(—157"2)
Let g = the coefficient of z* in G(z), for all k

Normalize (pg)r and (gg)x so that s pr = 2 and o, g, = 2
Compute hy = (—1)*pry1 and g = (—1)Fgp_;
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Symmetric Filters Generation

e The Compression Algorithms Group has developed an engine
that generates all symmetric filters, and plots their frequency
response as well as their corresponding scaling functions and
wavelets
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Examples of Four-Filter Sets
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Daubechies Orthogonal Wavelets

e In orthogonal wavelets the following holds:

— gk = Pk
— hy = (_kakﬂ
—qr = (—1)*gx 1

e Thus, one filter fully specifies all the four filters
e Daubechies Orthogonal wavelets are the most popular

e The Compression Algorithms Group has developed an en-
gine that generates all Daubechies filters, and plots their fre-
quency response as well as their corresponding scaling func-
tions and wavelets
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Examples of Daubechies Wavelets and Filters
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Some Research Research Topics

e Lossless Compression

— Multistage Compression

— Novel Predictive-based Compression
— Selective Compression

— “Interframe” Compression

— Symbolic Coding
e Lossy Compression: Wavelets

— Optimal Ways to Apply Wavelets for Compression
— Best-Wavelet Selection

— Multi-Wavelet compression

— 3D Wavelet Compression (for Video)

e Statistical Modeling of Classes of Images for better Compres-
sion

e Error Resiliency

— Error Protection (with Error Correcting Coding)
— Error Propagation and Self-Synchronizing Coding
— Coding with Unequal Error-Protection

e Image Quality

— Metrics and Benchmark Tests
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— Use of Contrast-Sensitivity Functions for Dynamic Ad-
justment of the Compression Ratio to tailor it to the spe-
cific user/monitor/application

e Other Wavelet Applications: Zooming, Alignment, and Mod-
eling

e Effect of Compression-based Information Loss on the Accu-
racy of Image Processing Algorithms
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